Practice - Factoring Polynomials Question Preview (ID: 53136)
Factor Completely.
TEACHERS: click here for quick copy question ID numbers.
36a^3 - 24a
a) 6a (6a^2 - 4)
b) 6 (a^3 - 4a)
c) 12a (3a^2 - 2)
d) 12a (a^3 - 4a)
x(x - 1) + 2(x -1)
a) (x +1)(x - 2)
b) (2x)(x - 1)
c) (x - 1)(x + 2)
d) (2x)(x)
x² - 13x - 30
a) (x - 6)(x + 5)
b) (x + 6)(x - 5)
c) (x - 15)(x + 2)
d) (x + 15)(x - 2)
2x² - 19x + 24
a) 2(x - 6)(x - 4)
b) (x - 3)(2x - 8)
c) (x + 3)(2x - 8)
d) (x - 8)(2x - 3)
12x^3 - 26x² + 10x
a) 2x (2x - 5)(3x - 1)
b) 2x (2x - 1)(3x - 5)
c) x (4x - 2)(3x -5)
d) 2x (2x + 5)(3x - 1)
2x² + 3xy - 14y²
a) (x + 7y)(2x - 2y)
b) (x + 2y)(2x - 7y)
c) (x - 7y)(2x + 2y)
d) (x - 2y)(2x + 7y)
x² - 16
a) (x - 8)(x + 8)
b) (x - 4)(x - 4)
c) (x + 4)(x - 4)
d) (x +8 )(x + 8)
x^7 - x^5
a) x^5 (x + 1)(x - 1)
b) x^5 (x + 1)(x + 1)
c) x^5 (x - 1)(x - 1)
d) x^5 (x² - 1)
x^4 - 9x² + 8
a) (x² - 1)(x² - 8)
b) (x - 1)(x + 1)(x² - 8)
c) (x - 1)(x + 1)(x - 4)(x + 4)
d) (x - 1)(x + 1)(x² + 8)
am - an - pm + pn
a) (a - p)(m + n)
b) (a - n)(m - p)
c) (a - p)(m - n)
d) (a + n)(m - p)
If a polynomial can not be factored, we say it is:
a) undefined
b) improper
c) not a polynomial
d) prime
Play Games with the Questions above at ReviewGameZone.com
To play games using the questions from above, visit ReviewGameZone.com and enter game ID number: 53136 in the upper right hand corner or click here.
To play games using the questions from above, visit ReviewGameZone.com and enter game ID number: 53136 in the upper right hand corner or click here.
TEACHERS / EDUCATORS
Log In | Sign Up / Register
Log In | Sign Up / Register