Function Operations Question Preview (ID: 54978)


Students Will Be Able To Apply The 4 Basic Operations To Polynomials In Function Notation. TEACHERS: click here for quick copy question ID numbers.

If f(x)=16x-30 and g(x)=14x-6, what is (f-g)(x)?
a) 2x - 3
b) 2x +3
c) 2x + 36
d) 2x - 24

If g(n) = 4n - 4 and f(n) = n^3 + 4. Find (g+f)(n)
a) -2n^2 - n + 9
b) -n^3 - 4n
c) -3n^3 - 3n - 5
d) n^3 + 4n

If f(n) = 2n+1 and g(n) = 3n, find f(n)+g(n)
a) 5n + 1
b) -5n + 1
c) -2n + 1
d) -6n - 1

If f(n) = n^2 + 4n and g(n) = -n^-5. Find f(n)+g(n)
a) n^2 + 3n - 5
b) -n^3 + 2n - 7
c) n^3 + 3n - 3n
d) n^2 - 3n - 5

If f(x) = x^2 + 1 and g(x) = 2x - 5. Find f(x)-g(x)
a) x^2 - 2x + 6
b) -x^2 + 2x + 4
c) -x^2 - 2x - 6
d) x^2 - 2x - 4

If f(n) = 3x - 4 and g(n) = x^3 - 2x^2. Find (f-g)(n)
a) -x^2 + x + 2
b) -x^3 + 2x^2 + 3x - 4
c) -x^3 + x^2 - 4
d) -x^3 - 2x^2 - 3x + 4

If f(x) = x^2 - 4 and h(x) = 3x+3. Find f(g(x))
a) 3x^2 - 9
b) 12x^2 + 8x + 5
c) 16x^2 - 36x + 20
d) 9x^2 + 18x + 5

If g(x)= x - 1 and f(x) = x^2 - 2x. Find (g-f)(x)
a) -x^2 + 3x - 1
b) -x^3 + x^2 + 5x - 4
c) x^2 - 3x + 1
d) x^2 + 3x + 1

If f(x) = 2x + 4 and g(x) = 3x^2 - 1. Find f(x)*g(x)
a) 6x^4 + 12x^3 - 4x^2 - 8x
b) -6x^3 + 12x^2 + 2x - 4
c) 6x^3 + 12x^2 - 2x - 4
d) 5x^2 - 18x + 20

If f(x) = x^2-1 and g(x) = x-1. Find (f/g)(x)
a) x^2 + 1
b) x + 1
c) x
d) x^2 - 1

Play Games with the Questions above at ReviewGameZone.com
To play games using the questions from above, visit ReviewGameZone.com and enter game ID number: 54978 in the upper right hand corner or click here.

TEACHERS / EDUCATORS
Log In
| Sign Up / Register